
Local Search Algorithms for Facility Location*1

• In the metric UFL problem, we are given a set F of facilities, a set C of clients, and a metric d(·, ·)
in F ∪ C. Each facility i ∈ F has an opening cost fi. The objective is to open X ⊆ F and connect
clients via assignment σ : C → X to nearest open facility, to minimize

cost(X) =
∑
i∈X

fi +
∑
j∈C

d(σ(j), j) (1)

• Local Search for UFL. The local search algorithm has three operations : open, close, and swap, and
if none of these three steps improve the solution, it terminates.

1: procedure UFL-LOCAL SEARCH(F,C, d):
2: X be an arbitrary subset of facilities.
3: . Throughout cost(X) is defined using (1)
4: while true do:
5: (Open): If there exists i ∈ F \X such that cost(X + i) < cost(X); X ← X + i.
6: (Close): If there exists i ∈ X such that cost(X − i) < cost(X); X ← X − i.
7: (Swap): If there exists i ∈ X , i′ ∈ F \X such that cost(X − i+ i′) < cost(X);
X ← X − i+ i′.

8: Otherwise, break

• Analysis. We prove the following theorem.

Theorem 1. UFL-LOCAL SEARCH is a 3-approximation algorithm.

Let X be the set of facilities opened at the end of the above algorithm. Let σ(j) denote the facility
in X client j is connected to. Let Γ(i) denote the set of clients connected to facility i ∈ X . Let
X∗ denote the set of facilities opened in the optimal solution. Let σ∗ and Γ∗ be defined similarly.
Let dj := d(σ(j), j) and d∗j := d(σ∗(j), j) be the connection costs for client j in the algorithm and
optimum solution, respectively. Let Falg =

∑
i∈X fi, Calg =

∑
j∈C dj . Similarly define F ∗ and C∗.

• BoundingCalg. This is relatively straightforward. We know that opening any facility doesn’t decrease
cost. Note that if we did open a facility i ∈ X∗, we could’ve moved all clients in Γ∗(i) to i. Since this
doesn’t decrease cost (see Figure 1 for an illustration), we get that

∀i ∈ X∗;
∑

j∈Γ∗(i)

dj ≤ fi +
∑

j∈Γ∗(i)

d∗j (2)

Adding over all i ∈ X∗ we get,
∑

i∈X∗
∑

j∈Γ∗(i) dj ≤
∑

i∈X∗ fi +
∑

j∈Γ∗(i) d
∗
j , that is,

Calg ≤ F ∗ + C∗

1Lecture notes by Deeparnab Chakrabarty. Last modified : 9th January, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

1

𝑖 ∈ 𝑋∗

Γ∗(𝑖)

Figure 1: Illustration of bounding Calg.

• Bounding Falg. Fix an i ∈ X . How much can the connection cost of clients increase if i is deleted?
All clients in Γ(i) will move to their second-nearest facility in X . But what handle do we have on the
distance between j and the second-nearest facility?

Well we know, or at least have a handle on, the cost to connect j and σ∗(j). It is d∗j . So, if σ∗(j) is in
X , let’s assign j to that. What if σ∗(j) isn’t there? Well, let’s assign to the facility in X that is closest
to σ∗(j). This motivates the following key definition. See Figure 2 for an illustration

Given i∗ ∈ X∗, let nearest(i∗) denote the facility i in X with minimum d(i, i∗).

Here is a useful fact which follows easily from triangle inequality and definition of nearest (see Fig-
ure 2 for an illustration).

Claim 1. For any j ∈ C, d(nearest(σ∗(j)), j) ≤ dj + 2d∗j .

Proof. Let j be assigned to i in σ and i∗ in σ∗. Then, triangle inequality implies d(nearest(i∗), j) ≤
d(i∗, j)+d(nearest(i∗), i∗) ≤ d∗j+d(i, i∗), where the last inequality is by definition of nearest(i∗).
Triangle inequality again implies d(i∗, i) ≤ d(i, j) + d(i∗, j).

• Let’s get back to our facility i. Let us look at clients j ∈ Γ(i). If we close i, then we could reassign
all these clients to nearest(σ∗(j)). The previous claim shows that this could increase the connection
cost by at most 2d∗j per client. By local optimality, since closing i doesn’t decrease the total cost,
we get that the facility opening cost of i must be at most

∑
j∈Γ(i) 2d∗j . Which would then imply

Falg ≤ 2C∗, and then we would be done along with the bound on Calg.

Unfortunately, there is a fly in the ointment : what if nearest(σ∗(j)) is i itself for some j ∈ Γ(i)?
Then, when i is closed, j can’t be reassigned. To address this, we need to understand better how X∗

and X behave w.r.t the nearest relation. This leads us to the next crucial definition.

• For any facility i ∈ X , define

X∗i := {i∗ ∈ X∗ : nearest(i∗) = i}. (3)

that is, the facilities in X∗ for which i is the closest facility. In some sense, it is the “inverse” of the
nearest map, and indeed would exactly be that if nearest was a bijection. Instead, X∗i maps to a
subset of facilities in X∗. Crucially note that by definition, X∗i ∩X∗i′ for any two facilities in X .

2

𝑗

𝜎(𝑗)

𝜎∗(𝑗) nearest(𝜎∗ 𝑗)

𝑑𝑗
∗

𝑑𝑗
𝑑𝑗
∗ + 𝑑𝑗 ≥

= 𝑑

≤ 𝑑𝑗
∗ + 𝑑 ≤ 2𝑑𝑗

∗ + 𝑑𝑗

𝑖1𝑋𝑖1
∗

𝑋𝑖2
∗

𝑖2

𝑖3𝑋𝑖3
∗ = ∅

Figure 2: Salmon squares denote facilities in X∗ while empty squares denote facilities in X . The blue
arrows denote the nearest map from X∗ to X . The sets X∗i for each i ∈ X is denoted; note that X∗i1 has
two facilities, X∗i2 has 1, while X∗i3 is empty. The right figure illustrates Claim 1.

The following lemma bounds the facility opening cost of i ∈ X .

Lemma 1. For all i ∈ X , fi ≤ f(X∗i) +
∑

j∈Γ(i) 2d∗j where f(X∗i) :=
∑

i∗∈X∗i
fi∗ .

Before we prove the lemma, let us see that it implies the 3-approximation. Indeed,

Falg =
∑
i∈X

fi ≤
∑
i∈X

f(X∗i)︸ ︷︷ ︸
=F ∗ since X∗i ’s are disjoint and span X∗.

+
∑
i∈X

∑
j∈Γ(i)

2d∗j = F ∗ + 2C∗

Together with Calg ≤ F ∗ + C∗, we complete the proof of Theorem 1.

• Proof of Lemma 1. The proof goes through three cases depending on the size of X∗i .

- Case 0: |X∗i | = 0. This is the case when there is no fly in the ointment. For every j ∈ Γ(i), we
vacuously have nearest(σ∗(j)) 6= i, and thus nearest(σ∗(j)) ∈ X − i. Now consider the local
step of closing i, and reassigning all j ∈ Γ(i) to nearest(σ∗(j)). Since this cannot lead to a decrease
in the cost we get

fi ≤
∑

j∈Γ(i)

(d(nearest(j), j)− d(i, j)) ≤︸︷︷︸
Claim 1

∑
j∈Γ(i)

2d∗j

proving the lemma in this case. The left figure in Figure 3 illustrates this case.

- Case 1: |X∗i | = 1. Suppose X∗i = {i∗}. In this case, consider swapping i and i∗. As in Case 0, we
again have nearest(σ∗(j)) ∈ X − i+ i∗ for all j ∈ Γ(i). And since this swap doesn’t help, we get

fi ≤ fi∗ +
∑

j∈Γ(i)

(d(nearest(j), j)− d(i, j)) ≤︸︷︷︸
Claim 1

fi∗ +
∑

j∈Γ(i)

2d∗j

proving the lemma in this case. The right figure in Figure 3 illustrates this case.

3

𝑖 𝑖

𝑋𝑖
∗ = {𝑖∗}

close 𝑖 swap 𝑖 and 𝑖∗

𝑖∗

Figure 3: Salmon squares denote facilities in X∗ while empty squares denote facilities in X . Dotted brown
lines denote the assignment σ∗. The blue arrows denote the nearest map fromX∗ toX . Green lines denote
reassignments. In the figure on the left,X∗i = ∅ and we just close i. For all j ∈ Γ(i), nearest(σ∗(j)) points
to a facility in X \ i and they are reassigned there. In the figure on the right, X∗i = {i∗} and we swap i and
i∗. For all j ∈ Γ(i), if nearest(σ(j)) 6= i then they are reassigned to that facility. If nearest(σ∗(j)) = i,
then σ∗(j) must be i∗ in which case they are reassigned there.

- Case 2: |X∗i | ≥ 2. This is a bit more interesting. Let’s suppose X∗i = {i∗1, i∗2, . . . , i∗k} for some k ≥ 2,
and suppose we have ordered them in increasing order of distance from i. Next, we partition Γ(i) into
k + 1 sets depending on where they go in the optimal solution, as follows.

A0 := {j ∈ Γ(i) : σ∗(j) /∈ X∗i }; ∀1 ≤ t ≤ k, At := {j ∈ Γ(i) : σ∗(j) = i∗t }

Now, as in Case 1, consider swapping i and i∗1. See the left figure in Figure 4 for an illustration. Note
that clients j ∈ A0 ∪ A1 get reassigned to nearest(σ∗(j)) and so for them the difference in cost is
≤ 2d∗j as in the previous two cases. Consider now a client j ∈ At for t ≥ 2. We assign such a client
to i∗1, and use triangle inequality, and the fact that i∗1 was closest to i, to bound the distance as follows.

d(i∗1, j) ≤ d(i, j) + d(i, i∗1) ≤ d(i, j) + d(i, i∗t)

≤ dj + d(i, j) + d(i∗t , j) = 2dj + d∗j

Since swapping i and i∗1 doesn’t help we get

fi +
∑

j∈Γ(i)

dj ≤ fi∗1 +
∑

j∈A0∪A1

(
dj + 2d∗j

)
+

k∑
t=2

∑
j∈At

(
2dj + d∗j

)
(4)

Note that we would have liked 2d∗j + dj for the t ≥ 2 summands as well, but things seem swapped.
Therefore, we need one extra piece of argument here. For t ≥ 2, consider opening the facility i∗t and
assigning the clients in At to i∗t . See the right figure in Figure 4 for an illustration. Since this doesn’t
help, we get

∀2 ≤ t ≤ k, 0 ≤ fi∗t +
∑
j∈At

(
d∗j − dj

)
(5)

4

𝑖 𝑖

𝑋𝑖
∗

𝑖1
∗ 𝑖2

∗

𝑗 ∈ 𝐴1

𝑗 ∈ 𝐴0

𝑗 ∈ 𝐴2

𝑋𝑖
∗

𝑖1
∗ 𝑖2

∗

𝑗 ∈ 𝐴2

swap 𝑖 and 𝑖1
∗ open 𝑖2

∗

Figure 4: Salmon squares denote facilities in X∗ while empty squares denote facilities in X . Dotted brown
lines denote the assignment σ∗. The blue arrows denote the nearest map from X∗ to X . Green lines
denote reassignments. X∗i = {i∗1, i∗2} and i∗1 is closer to i. In the left figure, we swap i and i∗1. The client
j ∈ A0 go to nearest(σ∗(j)), the client j ∈ A1 go to i∗1, while the client j ∈ A2 also goes to i∗1. In the
right figure i∗2 is opened and the client j ∈ A2 is reassinged to it.

And now, if we add (4) and (5), we get

fi ≤
k∑

t=1

fi∗t +
∑

j∈Γ(i)

2d∗j

proving the lemma in this case as well.

Notes

The local search algorithm described above is from the paper [1] by Arya, Garg, Khandekar, Meyerson,
Munagala, and Pandit. The analysis here is inspired by the simpler analysis in [3] by Gupta and Tang-
wongsan. For UFL, a slightly different local search was studied in [2] by Charikar and Guha, with the same
approximation factor. As in the case of greedy algorithm, the above analysis shows that local search gives
an (2, 3)-approximation. One can thus get a better factor by scaling and greedy augmentation tricks present
in [2]. The current best approximation factor for UFL is 1.488 and is present in the paper [4] by Li. It is
known that unless P = NP , the best approximation one could hope for is 1.463. The latter result is present
in [5].

5

References

[1] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit. Local search heuristics
for k-median and facility location problems. SIAM Journal on Computing (SICOMP), 33(3):544–562,
2004.

[2] M. Charikar and S. Guha. Improved Combinatorial Algorithms for the Facility Location and k-Median
Problems. In Proc., IEEE Symposium on Foundations of Computer Science (FOCS), 1999.

[3] A. Gupta and K. Tangwongsan. Simpler analyses of local search algorithms for facility location. arXiv
preprint arXiv:0809.2554, 2008.

[4] S. Li. A 1.488 approximation algorithm for the uncapacitated facility location problem. Information
and Computation, 222:45–58, 2013.

[5] Sudipto Guha and Samir Khuller. Greedy Strikes Back: Improved Facility Location Algorithms. Journal
of Algorithms, 31(1):228–248, Apr. 1999.

6

