Local Search Algorithms for Facility Location*!

* In the metric UFL problem, we are given a set F’ of facilities, a set C' of clients, and a metric d(-, -)
in F'U C. Each facility ¢ € F has an opening cost f;. The objective is to open X C F and connect
clients via assignment o : C' — X to nearest open facility, to minimize

cost(X) :Zfl'—l—Zd(U(j)aj) (D

€X jeC

* Local Search for UFL. The local search algorithm has three operations : open, close, and swap, and
if none of these three steps improve the solution, it terminates.

1: procedure UFL-LOCAL SEARCH(F, C, d):

2 X be an arbitrary subset of facilities.

3 > Throughout cost(X) is defined using (1)

4: while true do:

5 (Open): If there exists ¢ € F'\ X such that cost(X +14) < cost(X); X + X +.

6 (Close): If there exists ¢ € X such that cost(X — i) < cost(X); X + X —i.

7 (Swap): If there exists ¢ € X, i’ € F'\ X such that cost(X — i+ ¢') < cost(X);
X+ X—i+i.

8: Otherwise, break

* Analysis. We prove the following theorem.
Theorem 1. UFL-LOCAL SEARCH is a 3-approximation algorithm.

Let X be the set of facilities opened at the end of the above algorithm. Let o(j) denote the facility

in X client j is connected to. Let I'(i) denote the set of clients connected to facility i € X. Let

X* denote the set of facilities opened in the optimal solution. Let ¢* and I'* be defined similarly.

Let d; := d(o(j),J) and dj := d(c*(j), j) be the connection costs for client j in the algorithm and

optimum solution, respectively. Let Fyjg = > . fi, Calg = > jec dj. Similarly define F* and C*.

* Bounding (. This is relatively straightforward. We know that opening any facility doesn’t decrease
cost. Note that if we did open a facility i € X*, we could’ve moved all clients in I'*(7) to 7. Since this
doesn’t decrease cost (see Figure 1 for an illustration), we get that

Vie X Y di<fi+ Y d ?)
JET* (1) JET* ()
Adding over all i € X™* we get, > ;. Zjef*(i) dj <> iex fi+ Zjef*(i) dy, that is,
Ca|g <F*+C*

'Lecture notes by Deeparnab Chakrabarty. Last modified : 9th January, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

I (D)

Figure 1: Illustration of bounding Clg.

* Bounding F. Fix an i € X. How much can the connection cost of clients increase if ¢ is deleted?
All clients in I'(7) will move to their second-nearest facility in X. But what handle do we have on the
distance between j and the second-nearest facility?

Well we know, or at least have a handle on, the cost to connect j and o*(j). Itis d;. So, if o™(j) is in
X, let’s assign j to that. What if o*(j) isn’t there? Well, let’s assign to the facility in X that is closest
to o*(j). This motivates the following key definition. See Figure 2 for an illustration

Given i* € X*, let nearest(:*) denote the facility ¢ in X with minimum d(7, i*).

Here is a useful fact which follows easily from triangle inequality and definition of nearest (see Fig-
ure 2 for an illustration).

Claim 1. For any j € C, d(nearest(c*(j)),j) < d; + 2d;.

Proof. Let j be assigned to i in o and ¢* in o*. Then, triangle inequality implies d(nearest(i*), j) <
d(i*, j)+d(nearest(i*),i*) < dj+d(i, i), where the last inequality is by definition of nearest(i*).
Triangle inequality again implies d(i*,4) < d(i,7) + d(i*,).

O

¢ Let’s get back to our facility i. Let us look at clients j € T'(7). If we close 7, then we could reassign
all these clients to nearest(c™(j)). The previous claim shows that this could increase the connection
cost by at most 2d; per client. By local optimality, since closing ¢ doesn’t decrease the total cost,
we get that the facility opening cost of ¢« must be at most » jer () Qd;. Which would then imply
F,ig < 2C™, and then we would be done along with the bound on Cjg.

Unfortunately, there is a fly in the ointment : what if nearest(c*(j)) is i itself for some j € I'(¢)?
Then, when ¢ is closed, j can’t be reassigned. To address this, we need to understand better how X*
and X behave w.r.t the nearest relation. This leads us to the next crucial definition.

* For any facility ¢ € X, define
X = {i" € X" : nearest(i*) = i}. 3)

that is, the facilities in X™* for which 7 is the closest facility. In some sense, it is the “inverse” of the
nearest map, and indeed would exactly be that if nearest was a bijection. Instead, X maps to a
subset of facilities in X *. Crucially note that by definition, X N X, for any two facilities in X.

2

nearest(c*(j))

/</d;+d <2d; +d;

% . :
I:l/l:l i G4\
2
iz {

X =0 |:| is o(j)

Figure 2: Salmon squares denote facilities in X* while empty squares denote facilities in X. The blue
arrows denote the nearest map from X* to X. The sets X for each i € X is denoted; note that X has
two facilities, X[has 1, while X} is empty. The right figure illustrates Claim 1.

The following lemma bounds the facility opening cost of ¢ € X.
Lemma 1. Foralli € X, fi < f(X})+ > e 2dj where f(X7) =3 e fir.

Before we prove the lemma, let us see that it implies the 3-approximation. Indeed,

Fag=) fi < e +3 Y 2d; = F 20

i€X i€X i€ X jel'(i)
N——
=F* since X’s are disjoint and span X *.
Together with Cyg < F* 4 C*, we complete the proof of Theorem 1.
* Proof of Lemma 1. The proof goes through three cases depending on the size of X"

- Case 0: |X/| = 0. This is the case when there is no fly in the ointment. For every j € I'(i), we
vacuously have nearest(c*(j)) # i, and thus nearest(c*(j)) € X — i. Now consider the local
step of closing i, and reassigning all j € I'(¢) to nearest(c*(j)). Since this cannot lead to a decrease
in the cost we get

fi <) (d(nearest(j),j) —d(i,j)) < > 2d;
Jer (@) Claim 1 J€T'(?)
proving the lemma in this case. The left figure in Figure 3 illustrates this case.

- Case 1: | X¥| = 1. Suppose X = {i*}. In this case, consider swapping i and i*. As in Case 0, we
again have nearest(c*(j)) € X — i+ ¢* forall j € I'(¢). And since this swap doesn’t help, we get

fi < fie+ > (d(nearest(j),j) —d(i,j)) < fi+ > 2d;
JEL(3) Claim 1 JEL(3)

proving the lemma in this case. The right figure in Figure 3 illustrates this case.

close i swapi andi*

Figure 3: Salmon squares denote facilities in X* while empty squares denote facilities in X. Dotted brown
lines denote the assignment o*. The blue arrows denote the nearest map from X* to X. Green lines denote
reassignments. In the figure on the left, X} = () and we just close i. For all j € T'(i), nearest(c*(j)) points
to a facility in X \ i and they are reassigned there. In the figure on the right, X = {i*} and we swap i and
i*. Forall j € I'(i), if nearest(o(j)) # i then they are reassigned to that facility. If nearest(c*(j)) = i,
then o*(j) must be i* in which case they are reassigned there.

- Case 2: | X| > 2. This is a bit more interesting. Let’s suppose X = {i},3, ..., 4} } for some k > 2,
and suppose we have ordered them in increasing order of distance from i. Next, we partition I'(7) into
k + 1 sets depending on where they go in the optimal solution, as follows.

Ag:i={j€T() : o*(j) ¢ X;}; VI<t<h, A:={jel(): o*(j) =i}

Now, as in Case 1, consider swapping i and i]. See the left figure in Figure 4 for an illustration. Note
that clients j € Ay U A; get reassigned to nearest(c*(j)) and so for them the difference in cost is
< 2d; as in the previous two cases. Consider now a client j € Ay for t > 2. We assign such a client
to 47, and use triangle inequality, and the fact that <] was closest to %, to bound the distance as follows.
d(it, j) < d(i,j) +d(i,i) < d(i,j) +d(i, if)
< dj+d(i,g) +d(if,5) = 2d;+d]

Since swapping 7 and 7] doesn’t help we get

k

fik Do < fuv D () +)) (24 +) @)

jeT(4) JEAQUA; t=2 jEA:

Note that we would have liked 2d + d; for the ¢ > 2 summands as well, but things seem swapped.
Therefore, we need one extra piece of argument here. For ¢ > 2, consider opening the facility ¢} and
assigning the clients in A; to i;. See the right figure in Figure 4 for an illustration. Since this doesn’t
help, we get
V2<t <k, O<fir+ > (d—dj) (5)
JEAL

. . i*
swap i and i] open i

Figure 4: Salmon squares denote facilities in X* while empty squares denote facilities in X. Dotted brown
lines denote the assignment o*. The blue arrows denote the nearest map from X* to X. Green lines
denote reassignments. X} = {i},i5} and i} is closer to i. In the left figure, we swap i and ij. The client
Jj € Ap go to nearest(o*(j)), the client j € Ay go to i, while the client j € Ag also goes to ii. In the
right figure i% is opened and the client j € A is reassinged to it.

And now, if we add (4) and (5), we get

k
LS fi 4 D 2
t=1)

jer(i

proving the lemma in this case as well.

Notes

The local search algorithm described above is from the paper [1] by Arya, Garg, Khandekar, Meyerson,
Munagala, and Pandit. The analysis here is inspired by the simpler analysis in [3] by Gupta and Tang-
wongsan. For UFL, a slightly different local search was studied in [2] by Charikar and Guha, with the same
approximation factor. As in the case of greedy algorithm, the above analysis shows that local search gives
an (2, 3)-approximation. One can thus get a better factor by scaling and greedy augmentation tricks present
in [2]. The current best approximation factor for UFL is 1.488 and is present in the paper [4] by Li. It is
known that unless P = N P, the best approximation one could hope for is 1.463. The latter result is present
in [5].

References

[1] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit. Local search heuristics
for k-median and facility location problems. SIAM Journal on Computing (SICOMP), 33(3):544-562,
2004.

[2] M. Charikar and S. Guha. Improved Combinatorial Algorithms for the Facility Location and k-Median
Problems. In Proc., IEEE Symposium on Foundations of Computer Science (FOCS), 1999.

[3] A. Gupta and K. Tangwongsan. Simpler analyses of local search algorithms for facility location. arXiv
preprint arXiv:0809.2554, 2008.

[4] S. Li. A 1.488 approximation algorithm for the uncapacitated facility location problem. Information
and Computation, 222:45-58, 2013.

[5] Sudipto Guha and Samir Khuller. Greedy Strikes Back: Improved Facility Location Algorithms. Journal
of Algorithms, 31(1):228-248, Apr. 1999.

